Classification Techniques Analysis
نویسندگان
چکیده
Data mining is the discovery of knowledge and useful information from the large amounts of data stored in databases. It is referred to as knowledge discovery from databases (KDD), is the automated or convenient extraction of patterns representing knowledge implicitly stored in large databases. Data mining tools predict future trends and behaviours, allowing businesses to make proactive, knowledge-driven decisions. Data mining tools can answer business questions that traditionally were too time consuming to resolve. Classification techniques are widely used in data mining to classify data among various classes. Classification techniques are being used in different industry to easily identify the type and group to which a particular tuple belongs. In this paper, different classification techniques are summarized. These techniques are applied on XML data to analyze their advantages and disadvantages. Information coded in XML is easy to read and understand, plus it can be processed easily by computers. It’s open and extendible i.e. there are no fixed set of tags. New tags can be created as they are needed. It contains machine-readable structured information. This is a major advantage over HTML or plain text. XML is self-descriptive and XML documents can be stored without such definitions, because they contain metadata in the form of tags and attributes. It separates content from presentation. Keywords— Data mining, classification, XML data, Support vector machines.
منابع مشابه
Customer Behavior Mining Framework (CBMF) using clustering and classification techniques
The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers’ behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k</em...
متن کاملDiscrimination of Golab apple storage time using acoustic impulse response and LDA and QDA discriminant analysis techniques
ABSTRACT- Firmness is one of the most important quality indicators for apple fruits, which is highly correlated with the storage time. The acoustic impulse response technique is one of the most commonly used nondestructive detection methods for evaluating apple firmness. This paper presents a non-destructive method for classification of Iranian apple (Malus domestica Borkh. cv. Golab) according...
متن کاملPredicting Twist Condition by Bayesian Classification and Decision Tree Techniques
Railway infrastructures are among the most important national assets of countries. Most of the annual budget of infrastructure managers are spent on repairing, improving and maintaining railways. The best repair method should consider all economic and technical aspects of the problem. In recent years, data analysis of maintenance records has contributed significantly for minimizing the costs. B...
متن کاملCredit scoring in banks and financial institutions via data mining techniques: A literature review
This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...
متن کاملOn Model-Based Clustering, Classification, and Discriminant Analysis
The use of mixture models for clustering and classification has burgeoned into an important subfield of multivariate analysis. These approaches have been around for a half-century or so, with significant activity in the area over the past decade. The primary focus of this paper is to review work in model-based clustering, classification, and discriminant analysis, with particular attenti...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010